Rozpoznawanie obrazów
Autor:
Malina Witold
Smiatacz Maciej
Wydawca:
Exit
wysyłka: niedostępny
ISBN:
9788360434734
EAN:
9788360434734
oprawa:
Miękka
format:
16.5x23.5cm
język:
polski
liczba stron:
138
rok wydania:
2022
(0) Sprawdź recenzje
31% rabatu
28,83 zł
Cena detaliczna:
42,00 zł
dodaj do schowka
koszty dostawy
Najniższa cena z ostatnich 30 dni: 28,83 zł
Opis produktu
W książce przedstawiono teoretyczne podstawy i praktyczne zastosowanie rozpoznawania obrazów. Opisano klasyfikatory statystyczne i metody ich uczenia. Dużo miejsca poświęcono zastosowaniu analizy dyskryminacyjnej w rozpoznawaniu obrazów, gdzie opisano nowe sformułowania kryterium Fishera dwuklasowego i wieloklasowego. Przeprowadzono szeroką dyskusję różnych przypadków szczególnych, które wynikają z wymienionych kryteriów. Następnie opisano iteracyjną metodę uczenia klasyfikatora ze szczególnym zwróceniem uwagi na praktyczne znaczenie algorytmu uczenia optymalnego dla klasyfikatorów liniowych i nieliniowych. Alternatywnym podejściem do uczenia iteracyjnego jest zastosowanie klasyfikatorów minimalnoodległościowych. Na przykładach zilustrowano graficznie tworzone obszary decyzyjne i przeprowadzono dyskusję własności różnych metryk. Ostatni rozdział poświęcony jest metodom uczenia i klasyfikacji obrazów o strukturze macierzowej (np. w postaci bitmap). Opisano adaptację trzech grup metod (SDF, Fishera, Watanabego) do uczenia i klasyfikacji takich obrazów. Przeprowadzone eksperymenty wypadły pomyślnie i zachęcają do dalszych badań.
Książka jest przeznaczona dla studentów informatyki i automatyki oraz szerokiego grona pracowników naukowych i doktorantów zainteresowanych rozpoznawaniem obrazów.
Wstęp
Wykaz ważniejszych oznaczeń
1. Wprowadzenie do teorii systemów rozpoznających
1.1. Klasyfikacja systemów rozpoznających
1.2. Model matematyczny klasyfikatora obrazów
1.3. Struktury klasyfikatorów
1.4. Kryteria jakości klasyfikacji
2. Klasyfikatory statystyczne
2.1. Wpływ informacji wstępnej na wybór metody uczenia
2.2. Klasyfikatory binarne
2.3. Klasyfikatory obrazów o rozkładach normalnych
2.4. Klasyfikatory k-najbliższych sąsiadów (kNN)
3. Metody analizy dyskryminacyjnej
3.1. Wstęp
3.2. Dwuklasowe kryterium Fishera
3.3. Wieloklasowe kryterium Fishera
3.4. Sekwencyjny algorytm uczenia i klasyfikacji
3.5. Uogólniony algorytm separacji klas
3.6. Wyniki eksperymentów
4. Problemy uczenia klasyfikatorów liniowych
4.1. Zasady formułowania zadania
4.2. Algorytm znajdowania miejsca minimum
4.3. Miara jakości algorytmów
4.4. Wybrane algorytmy uczenia
4.5. Algorytmy uczenia i klasyfikacji, gdy liczba klas L>2
4.6. Zakończenie
5. Klasyfikatory minimalnoodległościowe
5.1. Wprowadzenie
5.2. Przykłady klasyfikatorów
5.3. Dyskusja własności metryk
6. Macierzowe struktury danych w rozpoznawaniu obrazów
6.1. Wprowadzenie
6.2. Modyfikacje struktur danych
6.3. Zastosowanie funkcji samopodobieństwa do uczenia klasyfikatora
6.4. Kryterium Fishera dla danych macierzowych
6.5. Metoda Watanabego
6.6. Zakończenie
Literatura
Załącznik
x
Uwaga!!!
Ten produkt jest zapowiedzią. Realizacja Twojego zamówienia ulegnie przez to wydłużeniu do czasu premiery tej pozycji. Czy chcesz dodać ten produkt do koszyka?
TAK
NIE
Wybierz wariant produktu
|