AI - podejście pragmatyczne
Autor:
Gift Noah
Wydawca:
Promise
wysyłka: 48h
ISBN:
9788375413632
EAN:
9788375413632
oprawa:
oprawa: broszurowa
podtytuł:
Wprowadzenie do uczenia maszynowego opartego na chmurze
format:
17,5x23,4 cm
język:
polski
liczba stron:
296
rok wydania:
2018
(0) Sprawdź recenzje
37% rabatu
44,28 zł
Cena detaliczna:
69,90 zł
DODAJ
DO KOSZYKA
dodaj do schowka
koszty dostawy
Najniższa cena z ostatnich 30 dni: 38,44 zł
Opis produktu
Opanuj skuteczne, gotowe do użycia rozwiązania biznesowe dla sztucznej inteligencji i uczenia maszynowego
AI podejście pragmatyczne pomaga rozwiązywać praktyczne problemy przy użyciu nowoczesnego uczenia maszynowego, sztucznej inteligencji i chmurowych narzędzi obliczeniowych. Noah Gift demistyfikuje wszelkie koncepcje i narzędzia potrzebne do osiągnięcia wyników nawet jeśli Czytelnik nie ma solidnego przygotowania z matematyki lub data science. Autor wyjaśnia skuteczne, gotowe do użycia rozwiązania udostępniane przez Amazon, Google i Microsoft oraz demonstruje sprawdzone techniki wykorzystujące ekosystem analizy danych oparty na języku Python. Proponowane podejścia i przykłady pomagają ukierunkować i uprościć każdy krok od wdrożenia po produkcję i budować rozwiązania o niezwykłych możliwościach skalowania. W miarę poznawania działania rozwiązań Machine Language (ML) będziesz uzyskiwać coraz bardziej intuicyjne zrozumienie tego, co można dzięki nim osiągnąć i jak zmaksymalizować ich wartość. Na tych podstawach autor krok po kroku prezentuje budowanie chmurowych aplikacji AI/ML do rozwiązywania realistycznych problemów w dziedzinie marketingu, zarządzania projektami, wyceniania produktów, nieruchomości i dużo więcej. Bez względu na to, czy jesteś profesjonalistą biznesowym, osobą decyzyjną, studentem czy programistą, eksperckie wskazówki autora i rozbudowane analizy przypadków przygotują cię do rozwiązywania problemów data science w niemal dowolnym środowisku. Uzyskaj i skonfiguruj wszystkie potrzebne narzędzia Szybko przejrzyj wszystkie funkcjonalności Pythona, których potrzebujesz do budowania aplikacji uczenia maszynowego Opanuj narzędzia AI i ML oraz cykl życia projektu Korzystaj z narzędzi analitycznych Pythona, takich jak IPython, Pandas, Numpy, Juypter Notebook i Sklearn Dołącz pragmatyczną pętlę zwrotną, która pozwoli nieustannie poprawiać wydajność naszych procedur i systemów Projektuj chmurowe rozwiązania AI oparte na Google Cloud Platform, uwzględniając usługi TPU, Colaboratory i Datalab Definiuj chmurowe przepływy pracy w Amazon Web Services, w tym wystąpienia punktowe, potoki kodu i inne Pracuj z API sztucznej inteligencji w Microsoft Azure Poznaj budowanie sześciu rzeczywistych aplikacji AI od początku do końca x
Uwaga!!!
Ten produkt jest zapowiedzią. Realizacja Twojego zamówienia ulegnie przez to wydłużeniu do czasu premiery tej pozycji. Czy chcesz dodać ten produkt do koszyka?
TAK
NIE
Wybierz wariant produktu
|