Okładka książki ALGORYTMY DATA SCIENCE SIEDMIODNIOWY PRZEWODNIK WYD. 2

ALGORYTMY DATA SCIENCE SIEDMIODNIOWY PRZEWODNIK WYD. 2

Wydawca: Helion
wysyłka: 48h
ISBN: 978-83-283-5602-3
EAN: 9788328356023
oprawa: miękka
podtytuł: Siedmiodniowy przewodnik
format: 210x145mm
język: polski
liczba stron: 208
rok wydania: 2021
(0) Sprawdź recenzje
44% rabatu
27,67 zł
Cena detaliczna: 
49,00 zł
DODAJ
DO KOSZYKA
dodaj do schowka
koszty dostawy
Najniższa cena z ostatnich 30 dni: 27,62

Opis produktu

Data science jest interdyscyplinarną dziedziną naukową łączącą osiągnięcia uczenia maszynowego, statystyki i eksploracji danych. Umożliwia wydobywanie nowej wiedzy z istniejących danych poprzez stosowanie odpowiednich algorytmów i analizy statystycznej. Stworzono dotąd wiele algorytmów tej kategorii i wciąż powstają nowe. Stanowią one podstawę konstruowania modeli umożliwiających wyodrębnianie określonych informacji z danych odzwierciedlających zjawiska zachodzące w świecie rzeczywistym, pozwalają też na formułowanie prognoz ich przebiegu w przyszłości. Algorytmy data science są postrzegane jako ogromna szansa na zdobycie przewagi konkurencyjnej, a ich znaczenie stale rośnie. Ta książka jest zwięzłym przewodnikiem po algorytmach uczenia maszynowego. Jej cel jest prosty: w ciągu siedmiu dni masz opanować solidne podstawy siedmiu najważniejszych dla uczenia maszynowego algorytmów. Opisom poszczególnych algorytmów towarzyszą przykłady ich implementacji w języku Python, a praktyczne ćwiczenia, które znajdziesz na końcu każdego rozdziału, ułatwią Ci lepsze zrozumienie omawianych zagadnień. Co więcej, dzięki książce nauczysz się właściwie identyfikować problemy z zakresu data science. W konsekwencji dobieranie odpowiednich metod i narzędzi do ich rozwiązywania okaże się dużo łatwiejsze. W tej książce: efektywne implementacje algorytmów uczenia maszynowego w języku Python klasyfikacja danych przy użyciu twierdzenia Bayesa, drzew decyzyjnych i lasów losowych podział danych na klastery za pomocą algorytmu k-średnich stosowanie analizy regresji w parametryzacji modeli przewidywań analiza szeregów czasowych pod kątem trendów i sezonowości danych Algorytmy data science: poznaj, zrozum, zastosuj! O autorze Dávid Natingga jest naukowcem specjalizującym się w dziedzinie sztucznej inteligencji. Zajmuje się teorią obliczeń i wykorzystaniem matematyki w algorytmach SI. Wcześniej optymalizował algorytmy na potrzeby uczenia maszynowego oraz big data. Jest autorem ciekawego algorytmu sugerowania produktów na podstawie preferencji klientów i cech gatunków kawy. W 2016 roku spędził osiem miesięcy jako research visitor w Japońskim Instytucie Naukowo-Technologicznym w Kanazawie.
x
Oczekiwanie na odpowiedź
Dodano produkt do koszyka
Kontynuuj zakupy
Przejdź do koszyka
Uwaga!!!
Ten produkt jest zapowiedzią. Realizacja Twojego zamówienia ulegnie przez to wydłużeniu do czasu premiery tej pozycji. Czy chcesz dodać ten produkt do koszyka?
TAK
NIE
Oczekiwanie na odpowiedź
Wybierz wariant produktu
Dodaj do koszyka
Anuluj